Minkowski-type inequalities using generalized proportional Hadamard fractional integral operators
نویسندگان
چکیده
The main objective of present investigation is to obtain some Minkowski-type fractional integral inequalities using generalised proportional Hadamard operators which introduced by Rahman et al. in the paper (Certain via generalized operators), Advances Differential Equations, 2019, 454(2019). In addition, we establish other for positive and continuous functions.
منابع مشابه
Generalized Hermite-Hadamard type inequalities involving fractional integral operators
In this article, a new general integral identity involving generalized fractional integral operators is established. With the help of this identity new Hermite-Hadamard type inequalities are obtained for functions whose absolute values of derivatives are convex. As a consequence, the main results of this paper generalize the existing Hermite-Hadamard type inequalities involving the Riemann-Liou...
متن کاملHermite-Hadamard type inequalities for the generalized k-fractional integral operators
We firstly give a modification of the known Hermite-Hadamard type inequalities for the generalized k-fractional integral operators of a function with respect to another function. We secondly establish several Hermite-Hadamard type inequalities for the generalized k-fractional integral operators of a function with respect to another function. The results presented here, being very general, are p...
متن کاملA generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions
Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.
متن کاملCertain Inequalities Involving Generalized Erdélyi-Kober Fractional q-Integral Operators
In recent years, a remarkably large number of inequalities involving the fractional q-integral operators have been investigated in the literature by many authors. Here, we aim to present some new fractional integral inequalities involving generalized Erdélyi-Kober fractional q-integral operator due to Gaulué, whose special cases are shown to yield corresponding inequalities associated with Kobe...
متن کاملCertain Hermite-Hadamard type inequalities via generalized k-fractional integrals
Some Hermite-Hadamard type inequalities for generalized k-fractional integrals (which are also named [Formula: see text]-Riemann-Liouville fractional integrals) are obtained for a fractional integral, and an important identity is established. Also, by using the obtained identity, we get a Hermite-Hadamard type inequality.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2021
ISSN: ['2406-0933', '0354-5180']
DOI: https://doi.org/10.2298/fil2109973n